瑞利衰落,什么叫多径效应,瑞利衰落
瑞利衰落是一种特殊的多径衰落
瑞利衰落(rayleigh
fading):在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。
在通信系统中,由于通信地面站天线波束较宽,受地物、地貌和海况等诸多因素的影响,使接收机收到经折射、反射和直射等几条路径到达的电磁波,这种现象就是多径效应。这些不同路径到达的电磁波射线相位不一致且具有时变性,导致接收信号呈衰落状态;这些电磁波射线到达的时延不同,又导致码间干扰。若多射线强度较大,且时延差不能忽略,则会产生误码,这种误码靠增加发射功率是不能消除的,而由此多径效应产生的衰落叫多径衰落
由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。
在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后, 总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因, 信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。 如果收到的信号中除了经反射折射散射等来的信号外, 还有从发射机直接到达接收机 (如从卫星直接到达地面接收机)的信号,那么总信号的强度服从莱斯分布, 故称为莱斯衰落。
一般来说, 多路信号到达接收机的时间有先有后,即有相对时(间)延(迟)。 如果这些相对时延远小于一个符号的时间, 则可以认为多路信号几乎是同时到达接收机的。 这种情况下多径不会造成符号间的干扰。 这种衰落称为平坦衰落, 因为这种信道的频率响应在所用的频段内是平坦的。
相反地, 如果多路信号的相对时延与一个符号的时间相比不可忽略,那么当多路信号迭加时, 不同时间的符号就会重叠在一起,造成符号间的干扰。 这种衰落称为频率选择性衰落, 因为这种信道的频率响应在所用的频段内是不平坦的。
至于快衰落和慢衰落, 通常指的是信号相对于一个符号时间而言的变化的快慢。 粗略地说,如果在一个符号的时间里,变化不大,则认为是慢衰落。 反之, 如果在一个符号的时间里,有明显变化,则认为是快衰落。 理论上对何为快何为慢有严格的数学定义。
瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。 通过电离层和对流层反射无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。 瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。
信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运动导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~